Chapter 4
Section 4.4

Solving Logarithmic Equations: We will use all of our rules of legarithms in order to solve
equations involving a logarithm.
Ex: Solve log(z) + loglx + 2) = log(6z + 1)
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Grp Ex: Solve a)log(x — 3) = 4,
bilog(z) — log{x — 1) = 2 and
)2 Infz)=in(z+3) + in(z — 1)
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Solving Exponential Equations: We will also use the fact the logarithms and exponentials are
inverses to solve exponential equations.
Ex: Find an exact answer for 6% = 7771
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Grp Ex: Find the exact solutions to 2)(1.02)%" = 5 and
b)32m—-l = 5%
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Radioactive Dating: It has been found that the amount A of a radioactive substance remaining
after ¢ years is given hy
A= Age™

where Ag is the initial amount present and r is the annual rate of decay. A standard measurement
of the speed of decay is half-life. We can use this formula to determine the age of ancient rocks
using a method known as potassium-argon dating.

Ex: There was a recent dinosaur find in Utah. Paleontologists want to estimate the age of the
sauropods (type of dinosaur) by dating the volcanic debris in the surrounding rock using potassium-
argon dating. The half-life of potassium-40 is 1.31 billion years. If 92.4% of the original amount of
potassium-40 is still present in the rock, the how old is the rock?
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Newton’s Model for Cooling: Newton found that when a cold object is surrounded by a hot
object the difference between them decreases exponentially according to the formuls

D = Dge®
where Dy is the initial difference, k is o conustant according to the objects and ¢ is time.
Ex: A turkey with temperature of 40°F is moved to a 350°F oven. After 4 hours the internal

temperature of the turkey is 170°F. If the turkey is done when the temperature reaches 185°F,
then how much longer must i cook?
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When D=3%0-185= 148,
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